
Formal Analysis of BrowserID/Mozilla Persona

CS259 Project Report

Connor Gilbert
Stanford University

Dept. of Computer Science
connorg@cs.stanford.edu

Laza Upatising
Stanford University

Dept. of Computer Science
lazau@cs.stanford.edu

ABSTRACT
Federated identity protocols are growing in popularity as the Inter-
net community attempts to reduce the number of passwords users
must remember. Such protocols allow users to maintain a shared
secret with a single provider who certifies the user’s identity to
other services. This paper presents the first known formal analy-
sis of one of the newest federated identity protocols, BrowserID,
which is more commonly known by the name of its flagship imple-
mentation, Mozilla Persona. We model the protocol in the formal
verification tool Murφ and report the results of this formal verifi-
cation under various adversarial capabilities and security require-
ments. Our analysis shows that, while BrowserID is secure under
most conditions, adversaries with the ability to block connections
to SSL endpoints or change the contents of a special file on an
HTTPS web server can break the protocol’s security guarantees.
We demonstrate one of these attacks in a laboratory environment.

1. INTRODUCTION
Federated identity protocols present a compelling alternative to the
standard model of one account per user per site, which is vulnerable
to password reuse, compromise at any one of many sites holding
a user’s secret, and the simple inability of the user to remember
strong, unrelated passwords for every website he or she uses. But, a
website relying on another party to authenticate users must be able
to trust the mechanism by which such authentication is completed;
bugs in the design or implementation of a federated protocol have
the potential to cause problems for many otherwise independent
websites.

The BrowserID protocol was developed by the Mozilla Identity
Team and first released in July 2011 [12]. The full protocol stan-
dard is available online but it is not the product of a standards
body [10]. An early discussion of the design principles and goals
of BrowserID (then called the Verified Email Protocol) was pre-
sented at the 2011 W3C Workshop on Identity in the Browser be-
fore BrowserID was formally announced [6]. The protocol is a
compelling case for study because it is still relatively new, and be-
cause its attractive design and Mozilla’s support make it a promis-
ing candidate for widespread use.

We first discuss related work in Section 2. Then, we describe the
BrowserID system, identify our adversarial models, and define de-
sired security properties in Section 3. Next, we describe our formal
model’s implementation in Section 4 before presenting the results
of our verification in Section 5.

2. RELATED WORK

BrowserID has been the subject of some study in the literature.
Hackett and Hawkey present an analysis of security concerns with
the design of BrowserID, but do not assess direct vulnerabilities
to the authentication guarantees in the message protocol itself [5].
Rather, their work concentrates on the interaction of BrowserID
with the email system, the potential for key loss or phishing, pri-
vacy breaches, and other concerns. Bai et al. employ an automated
process to discover flaws in the implementation of BrowserID on
popular websites, but not in the design of the protocol [2].

BrowserID is one of a number of federated identity protocols in use
on the web. It is similar in design to OpenID, which has been heav-
ily analyzed, but relies on email addresses rather than URIs to iden-
tify users; in addition, BrowserID gives important cryptographic re-
sponsibilities to the browser. Sovis, Kohlar, and Schwenk present
a number of attacks on the design and implementation of OpenID
assertions and authentication messages [15]. Van Delft and Oost-
dijk present a comprehensive summary of potential and observed
security issues in OpenID, though most do not address the authen-
tication guarantee offered by the protocol and focus on denial of
service and other vulnerabilities [17]. Sun, Hawkey, and Beznosov
present an analysis of OpenID which employs formal model check-
ing and empirical evaluation, discovering and developing a mitiga-
tion for a common OpenID vulnerability [16]. Stanford students
have formally verified – and broken – the security assumptions for
various parts of OpenID [9, 14].

The Information Card Profile specification, like BrowserID, allows
Relying Parties to verify cryptographic assertions from trusted Iden-
tity Providers; it is formally verified against web adversaries by
Bhargavan, Fournet, Gordon, and Swamy [3]. Similarly, Facebook
Connect federated authentication is model-checked by Miculan and
Urban, who discover at least one unknown vulnerability [8]. Al-
loy models were employed by Akhawe, Barth, Lam, Mitchell, and
Song to define a foundational web security model and discover
known and novel attacks on protocols including WebAuth, which
is similar in spirit to BrowserID, though more commonly used with
a single identity provider, like a university [1].

3. SYSTEM, ADVERSARIES, AND
SECURITY PROPERTIES

3.1 System Description
BrowserID allows users to prove their identity to remote services
using public-key cryptographic assertions in a chain of trust origi-
nating at their domain. An “Active Identity” – the basic identifier
for a user – is of the familiar form user@domain; it commonly
indicates an email address but does not need to be SMTP-routable.



The browser is in many ways a critical root of trust for the system
– it safeguards the user’s certificate obtained from the IdP, gener-
ates keypairs, signs Identity Assertions (see below), performs other
cryptographic operations, and handles the user’s identity and pass-
word.

The main parties in a BrowserID transaction are:

• User – The person proving their identity. (Actions taken by
the browser are at the request of the user, so the browser and
user can be combined conceptually.)

• Identity Provider (IdP) – The service at domain verifying
user’s control over the Active Identity user@domain.

• Relying Party (RP) – A website or other service which is
relying on BrowserID to establish the identity of its users.

The process by which a user’s identity is certified to a Relying Party
consists of three main steps:

1. User Certificate Provisioning – The browser obtains a signed
user certificate from an IdP. (If the browser still has a valid
certificate from a previous protocol run, it can reuse that cer-
tificate.)

(a) Finding an IdP – Given a user@domain Active Identity
specified by the user, the browser fetches a well-known
file over SSL from the domain. The domain can re-
spond by (1) providing a public key and relative URLs
at which to complete the authentication and provision-
ing processes; (2) delegating authority to another do-
main, in which case the browser repeats the process
with that domain; or (3) responding with 404 or an
equivalent error, or an explicit disabled message1,
in which case the browser will “fall back” to a Mozilla-
operated IdP at login.persona.org. This fall-
back IdP sends an email to the user’s address with a
verification token, allowing the user to prove control
of the address and establish a password; thereafter, the
fallback IdP can issue certificates for the user.

(b) Obtaining a certificate – The user inputs their Active
Identity and authenticates with their IdP over SSL. The
browser generates a keypair and sends a public key to
the IdP, receiving a certificate in return. The certificate
includes the Active Identity, generated public key, IdP
name, and issue and expiration times.

2. Assertion Generation – The browser generates an identity
assertion in response to a specific login request, simply sign-
ing a message that includes the domain of the RP and an
expiration time (recommended to be about 5 minutes in the
future).

3. Assertion Verification – The user certificate and identity as-
sertion are sent together to the RP. The RP verifies that the
assertion is directed to it, that neither item is expired, and
that the messages are both signed by valid certificates for the
correct entities.

1This is not documented in the protocol but is supported by Per-
sona.

3.2 Threat Models/Adversaries
We model two main types of adversaries: network adversaries and
server adversaries.

We model the network adversary after the Dolev-Yao model [4].
The adversary has control of the network and can intercept, modify,
and duplicate all messages in the network, including all communi-
cation between a user and an honest IdP/RP. The adversary can
also sign messages with his own keypair and any keypair he com-
promises. A network adversary can, in addition, block connections
to arbitrary servers (for instance, by sitting on a user’s local net-
work or by executing a DoS attack). Given that control of email is
critical to the security of the fallback IdP, which validates control of
email addresses for domains without their own IdPs, we allow the
network adversary to intercept email. This is not a trivial capability
since much of today’s client email access traffic is encrypted, but
most emails are still passed unencrypted between mail servers, so
a well-placed adversary could intercept messages. This capability
also will demonstrate the places where email control is critical to
the protocol’s security.

A server adversary has control of a domain’s /.well-known/
browserid file (hereafter “the BrowserID file”) and may also
control a malicious IdP server. We believe this adversary capability
is reasonable: well-known sites have had content injected as a result
of web software vulnerabilities, suggesting that giving a critical
authentication role to the web server is risky (e.g. DHS.gov served
malware in 2010 [13] – a subtle change to a BrowserID file might
be harder to notice).

We specifically leave out browser-based adversaries since the
browser is a critical root of trust for the protocol. A compromised
browser could easily obtain the {user@domain, BrowserID pass-
word} pair and is in control of critical cryptographic operations. An
adversary in the browser or the host operating system can therefore
trivially undermine the security of the entire protocol.

3.3 System properties
3.3.1 Authentication of parties

When the protocol completes:

• A user is authenticated to the RP he wishes to log in to.

• The RP authenticates the user intending to log in.

• A {User Certificate, Identity Assertion} pair cannot be reused
to sign on to a different RP2.

3.3.2 Secrecy
We hold that the following protocol secrets are never compromised:

• User’s credentials (user@domain and password). This in-
cludes the property that a malicious IdP cannot obtain any
{user@domain, password} pair that does not belong to its
domain.

• User and IdP secret keys.

2We limit this assurance to RPs that follow the protocol – non-
compliant RPs should get no assurance of user authentication!

login.persona.org
/.well-known/browserid
/.well-known/browserid
DHS.gov


3.3.3 Fallback
Mozilla also supports a fallback IdP as a solution to the scaling
issues involved with deploying Persona as a widely accepted stan-
dard. Trust for the fallback IdP, login.persona.org, is built
into the BrowserID protocol.

One specific property that must hold for proper security is thus:

• Mozilla’s fallback IdP should never certify a user for an IdP
that is currently active. For example, if stanford.edu
operates its own IdP, the fallback IdP should not issue certifi-
cates for any user whose domain is stanford.edu3.

4. IMPLEMENTATION
We use Murφ [7] to implement a model of the BrowserID protocol,
adversaries, and security properties. Our analysis does not hinge
on the specifics of cryptography – we assume, with the protocol
authors, that RSA, DSA, SSL, and other supported cryptographic
schemes are secure – so we can accept the black-box cryptography
model allowed by Murφ analysis. We do not attempt to model the
entire universe of threats against BrowserID – including those from
a more standard web attacker – and instead focus on the logical
parties involved and the messages transmitted between them.

4.1 Actors
The main logical actors in the protocol are Users, Identity Providers
(IdPs), and Relying Parties (RPs). We add a Domain type to model
the way the protocol consults a domain over SSL to determine its
support for BrowserID. Additionally, the Fallback IdP keeps track
of users that it has certified so that security properties can be veri-
fied. We also add adversaries, as described in Section 4.4.

The agents maintain the following state:

User : record
state: UserStates;
rp: RPId;

end;

RP : record
state: RPStates;
user: UserId;
userCertificateSigner: IdPId;

end;

Domain : record
isIdP: boolean; -- domain has an IdP
IdP: IdPId; -- that IdP
isDel: boolean; -- domain delegates
Del: DomainId; -- delegate domain

-- Users the Fallback IdP has verified
Fallback : record

pairs: multiset[MaxFBCerts]
of FallbackPair;

end;

A FallbackPair is defined as follows, with the certifiedFor
member indicating which agent responded with the verification to-
ken and user indicating the user who was certified:
3This is allowed by the validation standards in the proto-
col. However, in the open Issue filed against the BrowserID
project at https://github.com/mozilla/browserid/
issues/1501, the protocol designers recognize this is a prob-
lem for IdPs concerned with more secure authentication.

-- Pairs of AgentId, AgentId that
-- represent the Fallback’s verified agents

FallbackPair : record
certifiedFor: AgentId;
user: AgentId;

end;

This information, not specifically tracked in the actually protocol,
allows us to detect when an adversary has replied to a token.

IdPs do not require state, since we don’t model attempted authenti-
cation using incorrect credentials – IdPs just respond to authentica-
tion requests by automatically generating any requested certificate.
This is certainly not a realistic real-world condition, but allows us
to concentrate on runs of the protocol which will not abort due to
incorrect credentials.

We maintain the following variables, keeping track of all agents and
a limited-size network. Note that although fallback IdPs are tracked
as an array, we only test with one fallback IdP in the model:

var
net: multiset[NetworkSize] of Message;
user: array[UserId] of User;
idp: array[IdPId] of IdP;
fbIdP: array[FBIdPId] of Fallback;
rp: array[RPId] of RP;
dom: array[DomainId] of Domain;
nAdv: array[NetAdvId] of NetAdv;
wAdv: array[WebAdvId] of WebAdv;
mDom: array[DomainId] of Domain; --adv.
mIdP: array[IdPId] of IdP; --adv.

4.2 Messages
For simplicity in the implementation of message sending and ad-
versary behaviors, we modeled messages as a single record type
encompassing all possible messages in the protocol. Only the rele-
vant fields are defined for each message.

Some messages in the protocol are sent over SSL. The protocol re-
quires authentication and provisioning messages to the IdP to be
sent over SSL. The transport security for other communications is
not specified. In cases where SSL is required, we set a message
variable ssl and prevent any agent other than the specified desti-
nation from reading those messages. In addition, we prevent replay
of such messages by the network adversary because SSL is secure
against replay attacks, so replaying them will not have any effect.

In order to limit the number of active states in our model, each
protocol step is fired only when the correct type of message is in
the network. Therefore each protocol step can be mapped to an
incoming message type and an outgoing message type.

MessageType : enum {
M_AskUserToAuth,
-- RP asks user to authenticate
M_GetBrowserIdFile,
-- User gets /.well-know/browserid
M_BrowserIdFile,
-- Domain’s response
M_UserAuth,
-- User asks IdP for User Cert
M_UserAuthFallback,
-- User must authenticate with
-- fallback IdP

M_FallbackRequestVerify,
-- Fallback IdP requests user to

login.persona.org
stanford.edu
https://github.com/mozilla/browserid/issues/1501
https://github.com/mozilla/browserid/issues/1501


-- verify that it owns user@domain
M_FallbackReplyVerify,
-- User certifies it owns user@domain
M_UserCert,
-- IdP’sResponse with signed cert
M_UserCertAssertion,
-- Message to RP with signed

-- user cert and identity assertion
};

The message format is:

Message : record
mType: MessageType;
source: AgentId;
dest: AgentId;
ssl: boolean; -- SSL to dest

-- BrowserId file Response Fields
auth: AgentId; -- delegate to domain

-- User Certificate Req/Resp Field
credentials: UserId;
genKey: UserId; -- User-gen. key

-- User Certificate Fields
user: UserId;
domain: AgentId;
idpName: IdPId; -- issuing IdP
sigUserCert: IdPId; -- signing IdP

-- Identity Assertion Fields
rp: RPId; -- object of assertion
sigIdAssert: UserId; -- user sig.

end;

4.3 Protocol Steps
We model each step in the protocol as a separate rule. Each rule
either initiates the protocol (the RP asking the user to authenticate)
or responds to a message (each other rule).

“Epsilon” Rules: We implement “epsilon rules” that nondetermin-
istically assign various combinations of parameters, including do-
main delegation and IdP selection and lack of BrowserID support,
before they are used in the protocol. For example, we define these
rules to initialize the delegation state of the domains.

ruleset d: DomainId do
ruleset i: IdPId do

rule 20 "Assign an IdP to a Domain"
dom[d].init = False

==>
begin
dom[d].isIdP := True;
dom[d].IdP := i;
dom[d].init := True;

end;
end;

end;

ruleset d: DomainId do
rule 20 "Domain does not support BrowserID"

dom[d].init = False
==>
begin

dom[d].init := True;
end;

end;

ruleset d1: DomainId do
ruleset d2: DomainId do

rule 20 "Delegate domain d1 to d2"

dom[d1].init = False &
dom[d2].isIdP = True

==>
begin

dom[d1].isDel := True;
dom[d1].Del := d2;
dom[d1].init := True;

end;
end;

end;

States: We define the following states that map with the action the
user or RP is carrying out or waiting for:

UserStates : enum {
U_SLEEP, -- nothing’s happening
U_FINDIDP, -- finding IdP
U_FINDIDPFOLLOWDEL,
-- finding IdP, following delegation
U_VERIFY, -- wait for fallback email
U_AUTH, -- authed to IdP/has cert
U_ASSERT -- cert+assertion sent; done.

};

RPStates : enum {
R_SLEEP, -- nothing’s happening
R_WAIT, -- requested user to auth
R_CHECK, -- received user cert+assert
R_DONE -- all done

};

4.4 Adversaries
Network Adversary: We implemented a standard Dolev-Yao net-
work adversary with the ability to intercept messages (either re-
moving them or injecting them later) and generate new messages
with information it has captured [4].

The network adversary maintains knowledge of messages and cre-
dentials it has compromised.

NetAdv : record
msgs: multiset[MaxKnowledge] of Message;
creds: multiset[MaxKnowledge] of UserId;

end;

The network adversary only intercepts messages that are unencrypted
or sent encrypted to it:

if (isundefined(net[m].ssl) |
!net[m].ssl | net[m].dest = n) then
-- [Continue with capture]

end;

And, the network adversary pays particular attention to credentials
in intercepted messages:

if !isundefined(msg.credentials) then
-- learn credentials
multisetadd (msg.credentials,

nAdv[n].creds)
end;

In addition, if a message is not in the adversary’s current set of
known messages, the adversary will record that message. Code is
omitted for brevity.



In accordance with the Dolev-Yao model, the adversary can tamper
with the user certificate in messages from a user to a relying party,
but cannot forge signatures.

Server Adversary: We model the server adversary as a domain
with a compromised BrowserID file. The file is responsible for
key distribution, authentication and provision flow; delegation of
authority; and indication of no support for BrowserID, as described
in Section 3.1.

Since it controls the contents of the BrowserID file, the server ad-
versary can therefore generate a response to the user’s and RP’s
request for the IdP’s BrowserID file using whatever parameters it
chooses. We present one variant, in which neither the idpName
nor the auth fields are defined, indicating a response analogous to
a 404 error or the explicit “disabled” message:

-- Respond BrowserId not supported
-- (Will cause fallback to Mozilla)
ruleset w: WebAdvId do

choose m: net do
rule 20 "Web adv. forces fallback"
net[m].mType = M_GetBrowserIdFile

==>
var
outM: Message;
inM: Message;

begin
inM := net[m];
multisetremove (m,net);
undefine outM;
outM.mType := M_BrowserIdFile;
outM.source := inM.dest;
outM.dest := inM.source;
multisetadd (outM,net);

end;
end;

end;

This adversary can also send a message that indicates another do-
main will handle authentication for this domain; we direct the re-
questor to a malicious domain which can then steal credentials or
carry out other undesirable behavior. Malicious domains and IdPs
maintain the same state as normal domains and IdPs but must never
be contacted in a secure protocol run.

4.5 Security Properties
Authentication: We define standard authentication properties: the
RP and the user must mutually believe they are talking with each
other. This follows the standard form:

invariant "User correctly authenticated"
forall r: RPId do

rp[r].state = R_DONE
->
user[rp[r].user].rp = r

end;

invariant "RP correctly authenticated"
forall u: UserId do

user[u].state = U_ASSERT
->
rp[user[u].rp].user = u

end;

Secrecy: We hold that the user’s IdP credentials must not be known
to any adversary at any time.

invariant "Network adversary does not have
user’s credentials"

forall n: NetAdvId do
true
->
multisetcount(m: nAdv[n].messages,
(isundefined(nAdv[n].messages[m].ssl) |
nAdv[n].messages[m].ssl = false) &

(!isundefined(
nAdv[n].messages[m].credentials))) = 0

end;

As discussed in the server adversary section, a user should never be
forced or confused into contacting a malicious IdP, who might steal
their legitimate credentials or commit other undesired actions.

invariant "Never contact malicious IdP"
true
->
multisetcount(m:net,
(ismember(net[m].dest,mIdP) &
net[m].mType = M_UserAuth) = 0

By establishing a shared secret with the FallbackIdP based on a
user’s Active Identity user@domain, an adversary could obtain a
user certificate even though it never learns the secret user shares
with the domain IdP. Thus we modeled an invariant that ensures that
a FallbackIdP never establishes a shared secret with an adversary
to certify a valid user’s Active Identity.

invariant "Adversary never establishes
shared secret with Fallback IdP"

forall f: FBIdPId do
true
->
multisetcount (c:fbIdP[f].pairs,

fbIdP[f].pairs[c].certifiedFor !=
fbIdP[f].pairs[c].user) = 0

end;

Temporal Validity: Due to the difficulty of expressing these con-
cepts in Murφ, we do not model the concept of time or the temporal
validity of certificates and assertions. This is a reasonable conces-
sion – the protocol clearly requires that RPs verify the freshness of
user certificates and identity assertions, so the expiration of either
will prevent the protocol from successfully completing. However,
we explore a potential vulnerability based on this security property
in Section 5.2.

5. EVALUATION
5.1 Security Assurances
The BrowserID protocol authors identify the protocol’s fundamen-
tal security assumptions: “the user’s private key remaining secret,
the domain’s private key remaining secret, and the SSL connection
to the IdP being secure” [11]. We determine that, when all of these
assumptions hold and SSL connections are guaranteed to complete
and the HTTPS web server is uncompromised, the protocol is se-
cure against our network and server adversaries. The security as-
surances provided under these conditions are:

• The user is properly authenticated to the Relying Party (RP).

• The user is only logged in to RPs with which it is interacting.
(A network message cannot be forged which causes the user
to be logged into an unrelated RP.)



• The credentials a user uses to log in to an IdP are not com-
promised by a network adversary.

• Secret keys are not revealed4.

• The fallback IdP cannot be induced to issue certificates for a
user whose domain has an IdP.

(This list encompasses all of the properties described in Section 3.3.)

5.2 Security Flaws
Network Adversary:
When we allow a network adversary to block connections to an
HTTPS web server and read the contents of unencrypted email, we
have the following security flaw:

• If the network adversary blocks the HTTPS connection from
the browser to the domain’s SSL web server, for instance
through local-network-level blocking or through a Denial of
Service attack. The browser then “falls back” to the login.
persona.org fallback IdP. If the user does not yet have
a shared secret with the fallback IdP, an email is sent to the
user to prove that the user controls that account. The network
adversary can intercept this message and capture its secret to-
ken or link, “proving” he is the user and establishing a shared
secret with the fallback IdP5. According to the protocol, RPs
“SHOULD” accept assertions from the fallback IdP even if
an IdP is running on a domain, so the adversary can log in
under the user’s identity.

A countermeasure – which appears to be implemented in the
Mozilla fallback IdP – is for the fallback IdP to refuse to
certify for a user whose domain has operated an IdP recently.
Then, the adversary would be forced to keep the IdP down
for a longer period in order to compromise credentials.

Server Adversary:
Next, we allow a server adversary to modify the contents of the
/.well-known/browserid file. This is a reasonable adver-
sary capability to consider because the BrowserID protocol places
significant trust in the HTTPS web server, giving it responsibil-
ity for IdP key distribution and potential delegation of authority to
other domains. Less secure domains may be compromised through
file upload bugs in Content Management Systems or other software
and thus experience these potential security flaws. This leaves any
user authenticating using an Active Identity under a compromised
domain vulnerable to the following attacks:

• An adversary who can compromise the BrowserID file can
delegate authority and redirect the user to a malicious do-
main and malicious IdP. This malicious IdP can capture user
credentials and issue signed user certificates on behalf of the
domain. Any RP verifying a user certificate for this domain
will also experience this delegation when retrieving the do-
main’s public key and therefore will consider such certifi-
cates valid.

4This is not verified explicitly by our model, which has no concept
of private keys because they are never sent by any party.
5An especially clever adversary might even send the password he
has established to the user, trying to convince them that Persona
has helpfully generated a password for them.

• A malicious IdP can act as a silent Man-in-the-Middle (MitM)
during the authentication; the IdP can record the user’s cre-
dentials, then use those credentials to obtain a certificate for
the user from the true IdP provisioning system, and finally
return that truly valid certificate to the user unmodified.

This requires the adversary to compromise the SSL web server
and place a new BrowserID file that delegates to a malicious
IdP. Then, this malicious IdP must return the compromised
domain’s correct BrowserID public key still in use at the real
IdP. RPs, when verifying the user certificate, should accept
it because the Issuer Name matches the email domain and
because the public key the RP retrieves for that domain will
verify the certificate’s signature.6

Presumably, a domain that supports BrowserID with its own
IdP will be more vigilant of the contents of the BrowserID
file, so this attack may not be wholly realistic. Nevertheless,
the potential impact is substantial – a file-upload vulnerabil-
ity on a domain’s web server can lead to the compromise of
the plaintext credentials for all BrowserID users on that do-
main.

(This vulnerability is not explicitly found by our Murφ model
due to complexity; rather, it is a combination of the above
vulnerability, found by Murφ, and a critical reading of the
protocol specification.)

We have demonstrated this vulnerability on the most recent
version of the Persona verifier, the flagship implementation
of BrowserID. For details, see Appendix A.

Temporal Validity:
We note, despite not modeling this possibility in Murφ for con-

cerns over simplicity and correctness, that sessions can be extended
past the expiration of the assertions backing them. The user certifi-
cate from an IdP is valid for a maximum of 24 hours, and browsers
may reuse the same certificate until it is no longer valid. The RP,
however, is not required to end the user’s session when the user
certificate expires. For long-term identities like persistent email
addresses, this is probably acceptable; however, if an IdP wishes to
implement other authentication guarantees – for instance, a limited-
time assertion – or to implement a security policy requiring their
users to reauthenticate more often than the longest RP’s session
length, they will not be able to do so.

5.3 Runtimes, States, and Rules
The protocol is relatively complex: it requires a large number of
messages to be exchanged between a number of parties – Users,
IdPs, Domains, and RPs, plus malicious variants of these actors.
We only model a one each of the network and server adversaries;
since adversaries have no means to collude, increasing their number
would provide no benefit. We find that it is difficult for Murφ to
complete its analysis on parameter values larger than 1, but judge
that the protocol is unlikely to change in fundamental correctness
as more actors are involved. Detailed statistics of states explored,
rules fired, and time are located in Table 1.
6The protocol specifies that the Issuer Name is “either the domain
of the certified email address in the last certificate, or the issuer
listed in the first certificate if the email-address domain does not
support BrowserID.” Even if RPs notice that the Issuer is the bare,
undelegated domain while the BrowserID file indicates delegation
– despite the public key being the same – the adversary could react
by returning the delegation only to targeted users and returning the
previous BrowserID file, bearing just the public key and no delega-
tion, to others, including RPs.

login.persona.org
login.persona.org


Table 1: States, rules, and runtime for various runs of the protocol
Users IdPs RPs Domains Properties Tested* Adversaries States Rules Time Result

1 1 1 1 valid, IdP, fallback net, server 388 827 .10s Fail (IdP)
1 1 1 1 valid, fallback net, server 1869 4741 .10s Fail (fallback)
1 1 1 1 valid net, server 1,102,049 3,178,443 55.43s Success
1 2 1 2 valid net, server 9,988,876 31,738,384 1031.37s Success

* Security properties are as described in Sections 3.3 and 4.5.
“Valid” indicates the mutual authentication and network adversary secrecy properties.

“IdP” indicates the property that malicious IdPs are not contacted and that they never learn credentials.
“Fallback” indicates that an adversary cannot establish a shared secret with the fallback IdP.

6. CONCLUSIONS
Our analysis is constrained by the realities of modeling a complex,
multiparty protocol in Murφ while ensuring correctness and termi-
nation. This analysis is consciously limited to the messages sent
and state maintained by parties in the protocol; we do not attempt
to analyze the full range of threats present on the web, including
those presented by more standard web attackers. This is an impor-
tant area for further exploration.

Our work indicates that BrowserID is secure under the exact con-
ditions under which the protocol designers were operating. Never-
theless, slight, reasonable increases in adversary power lead to the
failure of the protocol’s fundamental security guarantees, even in
our constrained model.

APPENDIX
A. DEMONSTRATED ATTACK DETAILS
We have demonstrated the second Server Adversary attack described
in Section 5.2.

The experimental setup was a Mac OS X 10.7 laptop running the
most recent version of the Persona verifier, available from https:
//github.com/mozilla/browserid. A remote server owned
by one of the authors was configured to serve from two domains,
which we will denote as compromised.com and evil.com. Each was
configured with a valid SSL certificate.

compromised.com was configured to delegate its authority to evil.com.
This simulates the server adversary compromising the BrowserID
file at compromised.com and redirecting it to the malicious evil.com.
The BrowserID files for each follow.

https://compromised.com/.well-known/browserid:
{

"authority": "evil.com"
}

https://evil.com/.well-known/browserid:
{

"authentication": "/browserid/sign_in.html",
"provisioning": "/browserid/provision.html",
"public-key": {excised for brevity}

}

The public key served by evil.com is the one used by the IdP key
signer at compromised.com to sign certificates issued by compro-
mised.com. This can easily be determined by the attacker: it is
simply the public key served by compromised.com before it was
compromised. The IdP at evil.com would simply forward the re-

quest on to the real IdP for compromised.com, which for the pur-
poses of our test accepted any credentials.

We supplied an Active Identity user@compromised.com to the sign-
in website included in the Mozilla source code. The sign-in suc-
ceeded, even though the certificate was listed as “issued by com-
promised.com” yet returned from the evil.com delegated IdP. This
matches the protocol, which states that a certificate can always be
accepted from the domain of the user’s Active Identity, in this case
user@compromised.com. We can rule out the verifier having ever
cached the public key for compromised.com because it never served
a public key to the verifier used in the experiment. The verifier
checked the returned user certificate using the key from the dele-
gated IdP but did not assure that the certificate had actually been
issued by that IdP.

This demonstrates the potential for a server adversary to carry out
a silent Man-in-the-Middle attack on Persona/BrowserID authen-
tication process. The malicious IdP could capture the user’s cre-
dentials, forward them to the true IdP, and simply pass the returned
certificate back to the user. No error is detected by the verifier and
no notification is made to the user. And, critically, a file upload
vulnerability’s effects have been amplified into a significant com-
promise of user credentials.

B. REFERENCES
[1] D. Akhawe, A. Barth, P. Lam, J. Mitchell, and D. Song.

Towards a formal foundation of web security. In Computer
Security Foundations Symposium (CSF), 2010 23rd IEEE,
pages 290 –304, July 2010.

[2] G. Bai, J. Lei, G. Meng, S. Venkatraman, P. Saxena, J. Sun,
Y. Liu, and J. Dong. AUTHSCAN: Automatic extraction of
web authentication protocols from implementations. In
Proceeding of the Network and Distributed System Security
Symposium (NDSS), 2013.

[3] K. Bhargavan, C. Fournet, A. Gordon, and N. Swamy.
Verified implementations of the information card federated
identity-management protocol. In Proceedings of the 2008
ACM symposium on Information, computer and
communications security, ASIACCS ’08, pages 125–135.
ACM, 2008.

[4] D. Dolev and A. Yao. On the security of public key
protocols. Information Theory, IEEE Transactions on,
29(2):198–208, 1983.

[5] M. Hackett and K. Hawkey. Security, privacy and usability
requirements for federated identity. In Web 2.0 Security and
Privacy (IEEE Symposium on Security and Privacy), 2012.

[6] M. Hanson, D. Mills, and B. Adida. Federated browser-based
identity using email addresses. In W3C Workshop on Identity

https://github.com/mozilla/browserid
https://github.com/mozilla/browserid
https://compromised.com/.well-known/browserid
https://evil.com/.well-known/browserid


in the Browser, 2011.
[7] A. J. Hu, D. L. Dill, A. J. Drexler, and C. H. Yang.

Higher-level specification and verification with BDDs. In
Workshop on Computer-Aided Verification, volume 663 of
Lecture Notes in Computer Science, pages 82–95, 1992.
Montreal, Quebec, June 29 – July 2, 1992.

[8] M. Miculan and C. Urban. Formal analysis of Facebook
Connect single sign-on authentication protocol. In SOFSEM,
volume 11, pages 22–28, 2011.

[9] S. Mittal and B. Phillips. CS259 project report: OpenID
phishing analysis. http:
//www.stanford.edu/class/cs259/WWW11/.

[10] Mozilla Identity Team. BrowserID protocol.
https://github.com/mozilla/id-specs/
blob/prod/browserid/index.md.

[11] Mozilla Identity Team. Cryptography.
https://developer.mozilla.org/en-US/
docs/persona/Crypto.

[12] Mozilla Identity Team. Mozilla Identity Team Blog.
http://identity.mozilla.com.

[13] L. Seitzer. If the DHS is serving malware, should it be our
internet cop? PC Magazine, Security Watch, June 28, 2010.

[14] B. Shapero and S. Iyer. CS259 project report: OpenID
attribute exchange. http:
//www.stanford.edu/class/cs259/WWW11/.

[15] P. Sovis, F. Kohlar, and J. Schwenk. Security analysis of
OpenID. Sicherheit’10, 170:329–340, 2010.

[16] S. Sun, K. Hawkey, and K. Beznosov. Systematically
breaking and fixing OpenID security: Formal analysis,
semi-automated empirical evaluation, and practical
countermeasures. Computers & Security, 2012.

[17] B. van Delft and M. Oostdijk. A security analysis of OpenID.
Policies and Research in Identity Management, pages 73–84,
2010.

http://www.stanford.edu/class/cs259/WWW11/
http://www.stanford.edu/class/cs259/WWW11/
https://github.com/mozilla/id-specs/blob/prod/browserid/index.md
https://github.com/mozilla/id-specs/blob/prod/browserid/index.md
https://developer.mozilla.org/en-US/docs/persona/Crypto
https://developer.mozilla.org/en-US/docs/persona/Crypto
http://identity.mozilla.com
http://www.stanford.edu/class/cs259/WWW11/
http://www.stanford.edu/class/cs259/WWW11/

	Introduction
	Related Work
	System, Adversaries, and Security Properties
	System Description
	Threat Models/Adversaries
	System properties
	Authentication of parties
	Secrecy
	Fallback


	Implementation
	Actors
	Messages
	Protocol Steps
	Adversaries
	Security Properties

	Evaluation
	Security Assurances
	Security Flaws
	Runtimes, States, and Rules

	Conclusions
	Demonstrated Attack Details
	References

