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1 Introduction

Recent information diffusion research has often focused
on social networking sites like Facebook and Twitter,
such as the analysis of reposting or hashtags as trends
go “viral.” Partially due to its more private nature,
email has been less popular of late. However, email’s
near universal adoption as a means of online commu-
nication, its prevalence in commercial and academic
environments, and the well-established use of forward-
ing to spread information make information diffusion
in email networks — and specifically the mechanics of
forwarding behavior — a relevant and important area
to explore. This research could provide insight about,
for instance, whether introducing an email to a spe-
cific part of the network would make it more likely
to spread through the rest of the network, with im-
plications for emergency response (spreading important
information), political campaigning (spreading a can-
didate’s message), and computer security (spreading a
potentially malicious file or URL).

Previous work, described below, produces strikingly dif-
ferent social characteristics for email forwarding net-
works. “Forwarding trees” — essentially cascades that
model the spread of a specific message through a net-
work — have been found to have two mutually exclu-
sive structures in different contexts: short and wide in
business mail and small-world random graphs [1], but
long and narrow in chain letters [2]. We posit that
this difference is due to an interaction with the prop-
erties of the network; intuitively, one can imagine that
someone mass-forwarding a chain letter to their entire
address book will cross many community boundaries,
while a work-related message will likely be relevant only
to a smaller, more defined community, so such broad
community-bridging forwarding is less likely.

We seek to explain this difference with a hypothesis
called “Community Saturation.” We define community
saturation as the portion of nodes within a node’s de-
tected community that have already been exposed to a

message. We hypothesize that as community saturation
increases, a node is decreasingly likely to forward the
message. This fits our intuition since it is unlikely that a
chain letter will have reached most of a person’s address
book before they forward it; if it did, they will likely re-
move those people from the distribution. In the context
of business networks, employees likely would check the
previous distribution of a message before blindly for-
warding it to their team or professional community. So,
community saturation provides an intuitive yet concrete
model for forwarding behavior in email networks.

In this paper, we describe our analysis of various
datasets, while recognizing that detailed email traffic
is difficult to obtain for research because of the gen-
eral expectation of privacy inherent in email. We first
cover related work. Then, we describe our experimental
method. Next, we characterize the forwarding behavior
of individuals in the datasets and compare them to our
hypothesis. Finally, we find that the data support our
hypothesis — in general, users are less likely to forward
messages as community saturation increases — and we
elaborate on the meaning of our findings and the limi-
tations imposed by our experimental datasets.

2 Relevant Prior Work

Email forwarding is a distinct form of information shar-
ing from others, including more public means like Twit-
ter. Email also reflect social structures: as noted in
Wang et al. [1], managers forward email more often;
and forwarding can be an important way of maintain-
ing personal and professional relationships [3].

2.1 Wang et al. 2011 [1]

Wang et al. studied a very large email network con-
sisting of over 2 million emails (edges) and nearly 9,000
volunteer employees (nodes). The paper analyzes the
microscopic forwarding behavior of users — will a sin-
gle user decide to forward an email? — and the macro-
scopic information diffusion structure these actions form

1



when added together. The authors empirically find that
most message forwarding trees are wide and shallow,
with size growing linearly with the depth of the tree.
The paper then presents a model which closely matches
the observed data without relying on the underlying so-
cial network structure, a surprising result.

The paper’s results may be difficult to generalize outside
of a single-company corporate setting, where the social
network is somewhat homogeneous given that all users
are professionally connected in some way.

2.2 Liben-Nowell and Kleinberg 2008
[2]

Liben-Nowell and Kleinberg analyze the propagation of
just two Internet chain letters to analyze information
diffusion over email forwarding. They find, in contrast
with Wang et al., a very deep and narrow graph, with
median root-to-leaf distance of approximately 300 and
over 90% of nodes having forwarded the email at least
once. As in Wang et al., the authors attempt to present
a mathematical model to explain the empirical data
they observed; Liben-Nowell and Kleinberg’s is based
on imitating asynchronous response times and the abil-
ity of the message to move “laterally” across the social
network.

We note that chain letters are specifically designed to
be “spammed”, which could cause some users to be
more likely to spread the message as widely as possi-
ble, while a more serious or personal message would
engender more restraint. The fact that the message is
a chain letter and the data collection procedure — re-
lying on copies of the email gathered from the Internet
— limit the applicability of these conclusions to general
email traffic.

2.3 Other work

The social dynamics of email forwarding are explored by
Smith, Ubois, and Gross [3], who present a variety of
issues that a user might consider when forwarding mes-
sages. This leads one to suspect that a user’s forwarding
behavior does in some way depend on their position in
the network, in contrast with Wang et al.’s assertions.

Huberman and Adamic [11] present interesting find-
ings based on email traffic at HP Labs. They high-
light that “the tendency of individuals to associate ac-
cording to common interests influences the way that
information spreads ... it spreads quickly among indi-
viduals to whom it is relevant, but unlike a virus, is
unable to infect a population indiscriminately.” This
is an especially relevant result for our analysis because

it presents evidence that community structure may im-
pact the spread of information through email forwarding
networks.

Lerman and Ghosh conduct related research on a dif-
ferent form of online forwarding: the process of news
stories spreading through Digg and Twitter [12]. Their
paper’s findings note that users’ social network struc-
ture strongly influences sharing behavior, describing a
process in which “users watch their friends’ activities
— what they tweet or vote for — and by their own
tweeting and voting actions they make this information
visible to their own fans or followers.” While social net-
work sites have more transparent community structures
than private email and “retweeting” is not as direct an
action as sending a message to a specific person, these
findings indicate that people do consider the perception
of their actions as they spread information.

3 Experimental Method and Al-
gorithms

3.1 Community Detection Algorithms

Our analysis relies heavily on community detection
— after all, what is community saturation without
the community? Although most community detection
study focuses on unweighted, undirected graphs, we
use both weighted and unweighted community detec-
tion measures to determine whether our datasets exhibit
different behavior when the volume of communications
between nodes is considered. The potential for different
community detection behavior when weighting is con-
sidered on various types of networks is noted by New-
man [5]. As Newman writes, disregarding edge weight
is a process that inherently loses data; we include this
data and determine whether the connection weights are
critical to understanding the cascades in email forward-
ing networks.

We began analysis using the Girvan-Newman algorithm
[4]. We extended the SNAP implementation to take
into account network weighting as specified in New-
man’s 2004 paper [5]. Briefly, this approach involves
running the betweenness calculations on the network
as if it were unweighted, then dividing the betweenness
score for each edge by its weight before choosing the one
to delete. The runtime for Girvan-Newman is O(n3),
so Girvan-Newman is not a feasible candidate for large
graphs like our Syria network, described below.

We use the Clauset-Newman-Moore (CNM) commu-
nity detection algorithm (also built into SNAP) due
to its markedly better asymptotic runtime (roughly
O(n log2 n) for large, sparse networks). [6]. We use
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CNM community detection on all of our experimental
datasets.

3.2 Data

3.2.1 Enron

Our first dataset is the Enron email network released by
the Federal Energy Regulatory Commission, and made
available by W. Cohen [7] and processed into a MySQL
database by J. Shetty & J. Adibi [8]. Summarized rep-
resentations of this network are available (e.g. in SNAP
[10]) but do not provide the level of detail necessary to
determine whether messages are forwarded, and only
provide unweighted edges.

The database generated by Shetty and Adibi [8] con-
tains identifiers for the 151 employees for whom data
was released by FERC. The database contains messages
from 1999-2002 and contains 252,759 messages. Most of
the messages came from or were sent to people not in
Shetty and Adibi’s employeelist table, indicating that
the contents of their mailboxes were not released by the
government. In our analysis, we used only emails for
which the sender and all receivers are among the 151
people, since we would not be able to track forwards
outside of this group. This reduces the number of mes-
sages to 21,254.

3.2.2 Wikileaks Data — Stratfor “GI Files”
and Syria

Because there are relatively few publicly available email
datasets that include all of the content we require —
subject, send time, body, and distribution for each mes-
sage — we also analyzed email traffic compromised by
the Wikileaks organization and exfiltrated from “global
intelligence” company Stratfor [13] and multiple Syrian
government and commercial organizations [15]. The re-
leased message traffic is a subset of the data compro-
mised by Wikileaks.

The character of the Stratfor data is internal corporate
email, while the Syria data often crosses corporate and
governmental boundaries; each dataset contains some
limited personal correspondence conducted on corpo-
rate networks.

Both Wikileaks datasets are more recent than Enron.
The Stratfor email dataset is from 2004-2007 and con-
tains 2,934 emails between 564 addresses, and 443 at-
tachments. The Syria dataset is from 2006-2012 and
contains 2,434,899 emails from 680 domains, 678,752
sender email addresses, and 1,082,447 recipient email
addresses; the released subset we analyzed contains
16,419 email addresses and 86,591 emails.

3.3 Experimental Method

Our method consists of four basic steps, outlined below,
plus a step to compare with a random network structure
based on the same nodes.

3.3.1 Find Forwarded Content

We track three different types of information spread
through forwarding: message contents, URLs, and at-
tachments.

In each case, we generate output with an identifier for
the tree (a subject, a URL, or a SHA-1 file hash) and
a time-ordered list of times the information was for-
warded. We say that a node has decided to forward if
we observe a forwarded message from the user, and that
they have not forwarded if we do not possess a further
message containing the same information for which they
are the sender.

Message contents: We track message forwards
(what email users would achieve by simply click-
ing “Forward” in their email client) to follow mes-
sages. In the absence of unambiguous features like the
References or In-Reply-To headers now common on
forwarded email, we must rely on heuristics to find for-
warded mail, such as the presence of “Fwd”, “Fw”, or
other similar signal phrases in the subject. We note
that even Wang et al.’s highly empirical study states
that it relies on similar heuristics [1]. For each mes-
sage in the network, we search for potential forwards of
the message by looking for messages that include the
entire subject, plus an optional mailing list prefix (e.g.
[Eurasia] for a Stratfor list), plus a forward signal.

To avoid spurious forwards, we eliminate any mes-
sage whose subject is solely a signal phrase (“Re:” or
“Fw(d):”) or is wholly blank. We ensure that poten-
tial forwards are in increasing order of time. We then
“hook” together forwards identified in the previous step
to find any multi-level forwards (a single message is for-
warded, then forwarded again).

URLs: Inspired by Huberman and Adamic [11], we
find specific URLs and track their spread through the
network. This could provide insight on how a network
attacker might convince a large number of employees of
an organization to visit a deceptive malicious website,
for instance, and is easier to detect than entire messages,
which may be modified by mail clients or users along the
way.

To track a URL’s progress through the network, we
search all messages for potential URLs, applying a reg-
ular expression to find URLs that begin with http:// or
https://. We note that this is rather conservative, since
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many email users will not type http:// into a message
unless they are copying a link into the message, for in-
stance from another message or a browser. However,
this conservative behavior helps us avoid false-positive
URL detections and has the side effect of focusing more
on information spread, since it is more likely that a user
is taking this information from elsewhere and spreading
it through the email network. As in the above section,
we ensure that potential spreading is in chronological or-
der and eliminate multiple messages that pass the same
information from the same sender to the same list of
recipients. We eliminate URLs that are only sent once,
reasoning that one appearance of a piece of information
does not constitute a spread.

Attachments: We also track the spread of attach-
ments, which has obvious implications for security and
could also provide insight on how whether people are
more or less likely to forward emails that contain attach-
ments compared with simple text. One might, for in-
stance, be more cautious about forwarding attachments
if mailbox sizes are limited.

We follow a similar process to track attachments as they
are forwarded. The Enron dataset does not include at-
tachments, but both Wikileaks datasets do. The Wik-
ileaks datasets provide the SHA-1 hashes of attachment
files associated with each message. So, we search for
these SHA-1 hashes in the metadata summary provided
by Wikileaks and construct the flow of attachments
through the network in chronological order. We apply
the tree-culling procedures to eliminate files sent only
once or sent repeatedly but to the exact same recipients
by the same sender.

3.3.2 Construct Email Network

We construct a social graph based on message traffic.
An email address is taken to represent a single user and
we record an edge for each message exchanged between
a pair of users. The weights will be used in portions of
the next step.

3.3.3 Run Community Detection

We run both CNM and weighted GN on the networks,
identifying and recording communities.

3.3.4 Follow Forwarded Messages through Net-
work

For each of the forwarded pieces of information (mes-
sage, identified by subject; URL; or attachment, identi-
fied by SHA-1), we consider each information-spreading
message in chronological order.

For each message, we read the output of the forward-
finding steps above and identify whether each recip-
ient user forwards the message further. This is de-
termined by considering the future (chronologically
later) forwards for this piece of information and finding
whether the given recipient is the sender of any later
information-spreading message. We store this informa-
tion along with the message so we can use it in the
following steps.

Now that the outcome of each forward to each recipient
has been determined, we “follow” its spread in chrono-
logical order. We defined a set of exposed nodes, that is,
the set of nodes that have received a message that con-
tains the given information (message, URL, or attach-
ment). For each message, we first find the community
to which the sender belongs by iterating through the
communities found using community detection; once
the community is found, we determine the community
saturation by counting the number of nodes in the ex-
posed set that are in the community and dividing by
the total size of the community. We record that, at this
community saturation level, the user chose to forward
the message.

We then add all of the users who were exposed by this
message to the exposed set. Then, for each destination
user who does not further forward the information, we
repeat our analysis above: we find the community to
which the user belongs, find the saturation of that com-
munity, and record that the user did not forward the
message.

We continue this process for each information-spreading
message, and for each piece of information that we have
detected being spread through the network.

3.3.5 Compare with Randomized-Edged Net-
work

In addition, to determine the significance of our re-
sults, we complete the following procedure. We first
construct a graph with the same nodes as the network
under study. Then, we insert the same number of edges
between the nodes, but assign the endpoints of these
edges randomly. We repeat the same analysis above
and compare results, using the same forwarding paths;
what has changed is the network structure. For sim-
plicity (to avoid recalculating all of the edge weights),
we use only the unweighted CNM community detection
for this step.
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4 Findings

4.1 Community Saturation v. Probabil-
ity of Forward

We found that the probability of a user forwarding a
message fell as community saturation increased. This
finding is observed in each network on each type of for-
warded information.

These results support our hypothesis that community
saturation affects whether a user will forward a mes-
sage or not. As predicted, as more members in a user’s
community see the forwarded email, the user becomes
less likely to forward that same message. There is some
“noise” at small saturation values but the trend is clear.

These findings are plotted in Figures 1-3. Figures 1-6
are binned by saturation in bins of with .05.
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Figure 1: Enron

4.2 Behavior with Messages, URLs, and
Attachments

We find approximately the same behavior for users
spreading messages, URLs, and attachments through
the network. This is illustrated in the Figures 1-3.

4.3 Effect of Network Community
Structure

Our random edge-shuffling experiment shows that the
randomly-shuffled graph produces much less meaningful
results. In one case — Enron subject-based message for-
warding — the trend is reversed, with a convex graph in
contrast with all other results; note that the saturation
values take a very small range. In other cases, the same
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Figure 2: Stratfor
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Figure 3: Syria

general shape of the graph is observed but the propor-
tion of forwards begins lower and declines more rapidly.
Since the community structure of the random-edge net-
work tends to have more evenly-sized communities, a
much smaller number of messages leave the community.
These results are illustrated in Figures 4-6. We also note
that CNM and GN produce similar large-scale trends,
but different behavior at smaller scales.

4.4 Limitations and Areas for Further
Study

The proportion of messages forwarded outside of the
community of the sender limits our ability to assert
a causal relationship between community saturation
and forwarding. The percent of informatin-spreading
[sender, receiver] pairs that leave the sender’s commu-
nity are listed in the table.
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Dataset, Information, Alg. % Out Curr. Cmty.

Enron, Subject, CNM 77.8%

Enron, URL, CNM 62.3%

Enron, Subject, GN 75.5%

Enron, URL, GN 61.1%

Stratfor, Subject, CNM 35.7%

Stratfor, URL, CNM 67.7%

Stratfor, Attachment, CNM 34.0%

Stratfor, Subject, GN 71.4%

Stratfor, URL, GN 99.1%

Stratfor, Attachment, GN 85.4%

Syria, Subject, CNM 99.2%

Syria, URL, CNM 90.9%

Syria, Attachment, CNM 98.9%
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Further study may indicate a stronger match with mea-
sures of the degree to which a node bridges distinct
communities or other measures.

We also note that the best empirical analyses of email
traffic rely on having full — not selected — email traf-
fic, ideally in a structured format. The Enron dataset
is limited because only the email sent to and from 151
high-ranking individuals was released by federal regula-
tors. The Stratfor and Syria emails are limited because
they are by their nature incomplete samples of email
traffic, since unauthorized users obtained them. Even
so, Wikileaks writes that it has over 4 million messages
from Stratfor, but the released corpus contains only
2,934 [13]. Stratfor will not confirm the authenticity or
completeness of the released email, though inspection of
the mail and the reaction of the company indicates that
the released messages are likely to be legitimate [14].

In addition, many organizations make heavy use of
email aliases. Without knowledge of the contents of
these email aliases, we cannot analyze the spread of
messages with complete accuracy. This is particularly
apparent in the Stratfor data, and to a lesser extent
in the Enron data. Without internal knowledge of the
structure of the email lists, we cannot recover list mem-
bership and follow those forwarding trees with complete
accuracy.
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